

 Navigation

 	
 index

 	jamo 0.4-beta documentation

A Guide to using Python-Jamo

Hangul [https://en.wikipedia.org/wiki/Hangul] is a modern writing system
that originated in 1443 to represent the Korean language. It uses an alphabet
of 24 consonants and vowels, each of which are called jamo (자모, 字母).

Let’s analyze Korean phonemes by decomposing some Hangul. Using the individual
jamo characters, we can construct some Hangul afterwards.

Hangul Decomposition

The python jamo library aims to provide a straightforward interface to Hangul
decomposition:

>>> from jamo import h2j
>>> h2j("한굴")
'한굴'

Notice that the characters may have display issues because they are from the
U+11xx jamo code block. This is because there are actually two sets of jamo in
Unicode. Computers use jamo from the U+31xx code block, known as Hangul
Compatibility Jamo, here on referenced as HCJ. To render HCJ instead of
U+11xx jamo:

>>> from jamo import h2j, j2hcj
>>> j2hcj(h2j("한굴"))
'ㅎㅏㄴㄱㅜㄹ'
>>> j2hcj(h2j("자모=字母=jamo"))
'ㅈㅏㅁㅗ=字母=jamo'

Here we convert the Hangul characters to U+11xx jamo characters, then convert
them to HCJ for more uniform display.

If you are curious, learn more about the differences between U+11xx and U+31xx
jamo at Introduction to Hangul Representation in Unicode. Related, Gernot Katzers has an excellent
writeup on Hangul representation in unicode [http://gernot-katzers-spice-pages.com/var/korean_hangul_unicode.html] that is well worth a read.

Hangul Synthesis

Hangul synthesis combines a lead, vowel, and optional tail to form a single
jamo character:

>>> from jamo import j2h
>>> j2h('ㅇ', 'ㅕ', 'ㅇ')
영
>>> j2h('ㅇ', 'ㅓ')
어

A little hack you can use is the splat operator * if your arguments are
in string form:

>>> j2h(*'ㅇㅕㅇ')
영
>>> j2h(*'ㅇㅓ')
어

Large Texts

When working with large files, we will end up with lots of output. To handle
large files, it is recommended to use the provided generator functions:

>>> from jamo import hangul_to_jamo
>>> long_story = open("구운몽.txt", 'r').read()
>>> hangul_to_jamo(long_story)
<generator object <genexpr> at 0xdeadbeef9001>

To produce HCJ output:

>>> from jamo import hangul_to_jamo, hangul_to_hcj
>>> long_story = open("구운몽.txt", 'r').read()
>>> hangul_to_hcj(hangul_to_jamo(long_story))
<generator object <genexpr> at 0x12cafebabe34>

Naming Conventions

The python-jamo module is designed to be simple and lightweight. There are no
classes to wrap Hangul strings or jamo characters. Below are two important
string generator pairs:

	Generator Function
	String Function

	jamo_to_hcj
	j2hcj

	hangul_to_jamo
	h2j

Note that most functions in the module are named in pairs, where the function
with the shorter name is the one best for casual use, and the function with the
longer name returns a generator and is probably better for analytic
applications.

Module output favors characters whenever possible.

Examples

Basic examples: Samples.

 Copyright 2015, Joshua Dong.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	jamo 0.4-beta documentation

Index

 Copyright 2015, Joshua Dong.
 Created using Sphinx 1.2.2.

 sample.html

 Navigation

 		
 index

 		jamo 0.4-beta documentation »

Samples

Listed here are basic use cases of the jamo module.

Checking Character Types

Functions exist to determine character types:

>>> from jamo import (is_jamo, is_jamo_modern,
 is_hcj, is_hcj_modern,
 is_hangul_char)
>>> is_jamo("한")
False
>>> is_jamo("ㅎ")
True
>>> is_jamo_modern("ㆄ")
False
>>> is_jamo_modern("ㅍ")
True
>>> is_hcj(chr(0x1100))
False
>>> is_hcj(chr(0x3131))
True
>>> is_hcj_modern("ㄱ")
True
>>> is_hangul_char("한")
True
>>> ''.join(_ for _ in "한글=ㅎㅏㄴㄱㅡㄹ" if is_jamo(_))
'ㅎㅏㄴㄱㅡㄹ'

These functions require a single character as input. Note that is_jamo and
is_jamo_modern return True for HCJ characters.

Jamo Position

The function get_jamo_class returns a string
representing the position of the jamo character. Initial consonants are
represented with "lead", vowels with "vowel", and final consonants with
"tail":

>>> from jamo import get_jamo_class
>>> get_jamo_class("ᄋ")
'lead'
>>> get_jamo_class("ᆐ")
'vowel'
>>> get_jamo_class("ᆼ")
'tail'
>>> get_jamo_class("ㅁ")
Could not parse jamo: U+3141
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/home/joshua/git/jamo/jamo/jamo.py", line 168, in get_jamo_class
 raise InvalidJamoError("Invalid or classless jamo argument.", jamo)
jamo.jamo.InvalidJamoError: Invalid or classless jamo argument.

This function does not accept HCJ consonants, as they are ambiguous.

Converting between Jamo and HCJ

Converting from jamo to HCJ is straightforward:

>>> from jamo import j2hcj
>>> j2hcj("자모: ᄀ ᄁ ᄂ ᄃ ᄄ ᄅ")
'자모: ㄱ ㄲ ㄴ ㄷ ㄸ ㄹ'

The associated generator is jamo_to_hcj.

Converting from HCJ to jamo is less simple:

>>> from jamo import hcj2j
>>> hcj2j("ㅇ", "lead")
'ᄋ'
>>> hcj2j("ㅇ", "tail")
'ᆼ'
>>> hcj2j("ㅏ", "vowel")
'ᅡ'
>>> hcj2j("ㅏ")
'ᅡ'

The class must be given for consonants, and must be either the string
"lead"`, "vowel", or "tail".

Both of these functions have corresponding generators: jamo_to_hcj and
hcj_to_jamo, respectively.

Converting from Hangul to Jamo

Converting from Hangul to jamo is straightforward:

from jamo import h2j
>>> h2j("What is 한글?")
'What is 한글?'

or more commonly:

from jamo import h2j, j2hcj
>>> j2hcj(h2j("What is 한글?"))
'What is ㅎㅏㄴㄱㅡㄹ?'

This produces HCJ output and is preferable for font compatibility on the web.

Building Hangul Characters

Building Hangul from jamo is easy, but must be done character-by-character:

from jamo import j2h
>>> j2h("ㅈ", "ㅏ")
'자'
>>> j2h("ㅎ", "ㅏ", "ㄴ")
'한'

Note that HCJ and jamo inputs are both supported.

 © Copyright 2015, Joshua Dong.
 Created using Sphinx 1.2.2.

unicode.html

 Navigation

 		
 index

 		jamo 0.4-beta documentation »

Introduction to Hangul Representation in Unicode

Most jamo is represented in Unicode 7.0 in the codeblocks U+11xx and U+31xx.
The extended-A and extended-B blocks are in different codeblocks.
U+11xx represents regular jamo, with inital, vowel, and ending positions.
U+31xx jamo is designated Hangul Compatibility Jamo, or HCJ. These jamo have
no distiction between initial and final positions, but are much better supported for display.

 © Copyright 2015, Joshua Dong.
 Created using Sphinx 1.2.2.

_static/up.png

_static/plus.png

search.html

 Navigation

 		
 index

 		jamo 0.4-beta documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Joshua Dong.
 Created using Sphinx 1.2.2.

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

